Regelungstechnik

Aus Wiki der SRS Mischtechnik

Wechseln zu: Navigation, Suche
(Weitergehende Regelungskonzepte)
(Weitergehende Regelungskonzepte)
Zeile 262: Zeile 262:
In zahlreichen Anwendungsgebieten (z. B. Flugregelung) bleibt die Struktur des Modells über den gesamten Arbeitsbereich gültig, es ändern sich jedoch einzelne Parameter. Beispiele sind die Änderung der Dichte von Luft mit der Flughöhe, oder die Masse eines Flugzeuges mit der Zeit. In der adaptiven Regelung werden die Reglerparameter automatisch den sich ändernden Bedingungen angepasst. Adaptive Regelungen können u.a. durch flexible Regleralgorithmen (Controller Switching Technology) realisiert werden. Flexible Regleralgorithmen ermöglichen es, unterschiedliche, an den jeweiligen Arbeitspunkt angepasste, Reglerstrukturen und Reglerparameter im laufenden Betrieb umzuschalten. Dafür muss je Arbeitspunkt ein Trigger-Signal oder eine Signalspanne definiert werden, welche eindeutig die anzuwendende Reglerstruktur und Reglerparameter bestimmt. Kleinere Abweichungen der Regelstrecke vom Entwurfsmodell werden mittels Methoden zur Robusten Regelung abgedeckt.
In zahlreichen Anwendungsgebieten (z. B. Flugregelung) bleibt die Struktur des Modells über den gesamten Arbeitsbereich gültig, es ändern sich jedoch einzelne Parameter. Beispiele sind die Änderung der Dichte von Luft mit der Flughöhe, oder die Masse eines Flugzeuges mit der Zeit. In der adaptiven Regelung werden die Reglerparameter automatisch den sich ändernden Bedingungen angepasst. Adaptive Regelungen können u.a. durch flexible Regleralgorithmen (Controller Switching Technology) realisiert werden. Flexible Regleralgorithmen ermöglichen es, unterschiedliche, an den jeweiligen Arbeitspunkt angepasste, Reglerstrukturen und Reglerparameter im laufenden Betrieb umzuschalten. Dafür muss je Arbeitspunkt ein Trigger-Signal oder eine Signalspanne definiert werden, welche eindeutig die anzuwendende Reglerstruktur und Reglerparameter bestimmt. Kleinere Abweichungen der Regelstrecke vom Entwurfsmodell werden mittels Methoden zur Robusten Regelung abgedeckt.
-
Die [[prädiktive Regelung]] beinhaltet eine spezielle Komponente (den Prädiktor) zur Vorhersage des künftigen Systemverhaltens. Die Vorhersage ermöglicht eine verbesserte Ermittlung des Stellwertes in Bezug auf das gewünschte künftige Verhalten. Klassische Regler ohne Prädiktor müssen die Reaktion der Regelstrecke auf den Stellwert abwarten, können also nur reagieren. Die Prädiktive Regelung bezeichnet diesen allgemeinen Ansatz, wobei unterschiedliche spezifische Realisierungen existieren (Smith-Prädiktor, Internal Model Control, Model Predictive Control). Prädiktive Regelungsstrukturen sind besonders vorteilhaft, wenn die Strecke stark verzögerndes Verhalten aufweist, etwa große Totzeiten.
+
Die prädiktive Regelung beinhaltet eine spezielle Komponente (den Prädiktor) zur Vorhersage des künftigen Systemverhaltens. Die Vorhersage ermöglicht eine verbesserte Ermittlung des Stellwertes in Bezug auf das gewünschte künftige Verhalten. Klassische Regler ohne Prädiktor müssen die Reaktion der Regelstrecke auf den Stellwert abwarten, können also nur reagieren. Die Prädiktive Regelung bezeichnet diesen allgemeinen Ansatz, wobei unterschiedliche spezifische Realisierungen existieren (Smith-Prädiktor, Internal Model Control, Model Predictive Control). Prädiktive Regelungsstrukturen sind besonders vorteilhaft, wenn die Strecke stark verzögerndes Verhalten aufweist, etwa große Totzeiten.
In der Fuzzy Regelung werden den Signalen (Regelgröße, Regelfehler, Stellwert) symbolische Werte anstatt numerischer Werte zugewiesen. Dieses Vorgehen ist besonders vorteilhaft, wenn intuitives Expertenwissen über die manuelle Regelung des Prozesses vorhanden ist, ein formaler Reglerentwurf wegen eines fehlenden Modells jedoch nicht praktikabel ist. Die Fuzzy Regelung basiert auf der Fuzzy-Logik, die eine Erweiterung der booleschen Logik ist. Die Fuzzy Regelung wurde erstmals zur Steuerung der U-Bahn in Sendai in der Praxis erfolgreich eingesetzt (siehe U-Bahn Sendai).
In der Fuzzy Regelung werden den Signalen (Regelgröße, Regelfehler, Stellwert) symbolische Werte anstatt numerischer Werte zugewiesen. Dieses Vorgehen ist besonders vorteilhaft, wenn intuitives Expertenwissen über die manuelle Regelung des Prozesses vorhanden ist, ein formaler Reglerentwurf wegen eines fehlenden Modells jedoch nicht praktikabel ist. Die Fuzzy Regelung basiert auf der Fuzzy-Logik, die eine Erweiterung der booleschen Logik ist. Die Fuzzy Regelung wurde erstmals zur Steuerung der U-Bahn in Sendai in der Praxis erfolgreich eingesetzt (siehe U-Bahn Sendai).

Version vom 8. Februar 2011, 13:43 Uhr

Persönliche Werkzeuge